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METHOD FOR SOLVING THE LINEAR MULTICRITERIA 
OPTIMIZATION PROBLEM IN INTEGERS 
 

          Abstract.  A wide range of practical optimization problems in 
various fields lead to the solution of multicriteria linear optimization models in 
integers. There is a growing increase in their importance [2].  Into the  current paper 
we propose a method for solving the multicriteria model of linear type in integers of 
interactive type. Thus, the decision maker, initially assigning a certain utility to each 
criterion, will finally build a uni- criterion model of linear optimization in integers. 
The imposition of each criterion quantified in the synthesis function remains at the 
discretion of the decision maker, the optimal values and weight being calculated in 
whole or real numbers, which does not change the optimal solution of the model. To 
this end, the decision-maker has at his disposal a selection of combinatorial values of 
the objective functions, which depends on the number of criteria in the initial model. 
 When changing the value of utilities, the decision maker can determine a new 
optimal compromise solution of the initial model. The theoretical justification of the 
algorithm is brought in the paper. The algorithm was tested on several examples, 
which proved its veracity. 
           Keywords: Multi-criteria model in integers, efficient solution, optimal 
compromise solution. 
 
JEL  Classifications:  C02, C44, C61 
 

1.   Introduction 
         Although the support for theoretical justifications for solving linear 
optimization problems in integers is not so consistent and well argued, interest in this 
type of problem is constantly growing.  The major importance of using mathematical 
optimization in integers is due to the need to obtain integer solutions in various 
modeled practical situations. This additional condition has a very high cost, as 

considerable efforts are made to solve such problems. Among the practical fields 
of application of the solution of the optimization model in integers, a special 
place belongs to the problem of one, two and three-dimensional cutting [1],  
[3], [5]. A number of studies can be listed  here, such as: dynamic memory allocation, 
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solving problems on multiprocessor systems and general positioning problems 
(Coffman et al. 1978, Garey and Johnson 1981, Coffman and Leighton 1989, 
Dyckhoff 1990). The two-dimensional variant of the cutting problem is of NP 
complexity due to its to its combinatorial explosion with increasing size of the 
problem (Garey and Johnson1979). Several researchers have written various articles 
and manuscripts on the subject (Dowsland and Dowsland 1992, Sweeny and 
Paternoster 1992, Dyckhoff 1990, Coffman 1984, Golden 1976, Gilmore 1966). All 
approaches of these researchers can be divided into 3 categories: accurate, heuristic, 
metaheuristic. The exact methods were investigated by Gilmore and Gomory (1961) 
and are considered the first methods actually applied in the tailoring industry. 
Recently, Cung and other researchers (2000) developed an algorithm, which allows 
the exact solution of some variants of two-dimensional cutting problems. The main 
disadvantage of these methods is that they cannot provide good results for large 
problems.  But when the problem is of multicriteria type, even linear, this effort is 
further amplified. That said, the condition that the decision variables belong to the set 
of integers creates a major difficulty, the problem gaining another level of complexity 
and is solved in a longer time [4], [12, [13], [14], [15]. Despite the fact that the 
convergence of the Gomory algorithm [13] applied in solving linear programming 
problems in integers with a single criterion has not been demonstrated, no examples 
have been provided that would compromise the method. Thus, applying the given 
algorithm, we can determine the solution of some problems whose difficulty exceeds 
the average level in a finite number of iterations. Therefore, the scientific research 
study for this field remains open [6], [8], [10], given that there is a wide range of 
multicriteria models of fractional linear type, fuzzy, etc., which for application 
reasons must be to be solved in whole numbers. 

 
2. Problem formulation 

       The integer multicriteria linear optimization problem is usually described by a 
set of linear constraints, such as equations and / or inequalities, including on the 
variables constraints of non-negativity and integrity. The decisional problem with an 
infinite number of variants is described as follows: 
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In explicit form the model (1)  can be formulated as follows: 
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  where : ijaA =  is an array of size nm × ( )nm < ,  kjcC = , is an array of size 

nr × ( )nr < ,  x  is a vector n-dimensional column, and b is a m-dimensional 

column vector.  

         The interpretations of the parameters kjc  may be the most different, according  

of their practical meanings such as unit costs or benefits, or others close in meaning. 
Their significance determines the type of the corresponding objective function, 

minimum or maximum. Analogously, the elements of the matrix A, ija ,  represent the 

specific consumption of the resource j for the production of a product unit of type i, 
and the elements of the vector b represent the available by types of resources.  

       We note that in model (2) it is possible to have some criteria of minimum 
type and others of maximum type, for example, maximizing benefits, profit or 
others or minimizing costs, depreciation, loss or others. 
       

3.   Theoretical landmarks 
         In order to solve the multicriteria optimization model in integers [11], we will 
propose some analogous approaches to those in real numbers. 

1.  The solution  +∈ Zx*  is the vector that optimizes a synthesis function of  r 

objective functions, i.e.: ( ) [ ]rFFFhFh ,,, 21 = , in which ( ).h  it can be defined in 

several, various ways. 

 2.  The solution  +∈ Zx*  is the vector which minimizes one criterion in the form 

of:        ( ) ( ) ( )( )rr
Dx

XxXxhx −−=
∈

ψψφ ,,min 11
*  , 

in which, ( )T
njjjj xxxX ,,, 21 = , rj ,1=   is the optimal solution to the problem 

with a single objective function,  jF , and kψ  is a distance type function between the 

vector  Dx ∈  and optimal solution kX  for the corresponding criterion kF . 

4. The solution  +∈ Zx*  is the vector  which belongs to a set of effective whole-
type points. 
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       Because the model (2)  is of multi-criteria  type, it’s known that such kind of 
model rarely admits the optimal solutions in integers.  

( )
.

,2mod1 **
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By solving model (2) we will assume the construction of a finite set of its efficient 
integer solutions known again as a Pareto-optimal or non-dominated solutions [11], 
solutions of the best compromise.  We will further propose the definition of the 
efficient solution for the multicriteria linear deterministic problem in integers. 
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4. Section plan methods 

        The section plan methods perform a procedure for iteratively improving the 
solution of the optimization model in integers by sectioning the range [7] of 
admissible solutions using various section plans, built according to certain rules. The 
algorithm of section plans is also called "Cyclic Algorithm". Iteratively, the 
components of the optimal solution are modified, its belonging to the admissible 
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domain of the model as well as the evolution of the value of the objective function in 
the sense of optimizing the unicriteria linear model. 
The algorithm is convergent and finite. Although its convergence has not been 
demonstrated, no example has been found that would contradict the algorithm. 
Therefore, after a finite number of steps, the algorithm determines the optimal 
solution of the model, which is of type integer, of course, if it exists.   The proposed 
algorithm was developed by American scientist R. Gomory  and was first published 
by him in 1958. For these reasons, the name "Gomory Algorithm" [13] is often used 
in the literature, instead of the method of section. 
We will consider the following couple of issues: 
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where the elements of the matrix A and the components of the vector b are of integer 

type. We noted : { } { }0,/,,/0 ≥=⋅=∈=⋅= + xbxAxDandZxbxAxD , 

therefore 0D   is the domain of admissible solutions to the problem (ILP) and D that 

of the problem (LP), respectively. 
  
      Stages of realization and justification of the plan section algorithm 

      We will initially assume that ∗x  it does not have all the integer components. In 

this case an unverified constraint of the fractional optimum ∗x , but satisfied by any 
admissible solution of whole type is constructed.  This restriction is added to the 

original problem noted with ( 0LP ), after which the optimal solution will be re-

optimized.  Let  ∗∗x  be the optimal solution to the augmented problem, denoted  by  

( 1LP ). Due to the way in which the additional restriction was defined, we have the 

following true relationships between the admissible domains: 

                  LPLPLPILP DDDD =⊂⊂
01

.       

If  ∗∗x  it does not have all the components integers, the procedure is repeated: a new 

constraint is built unverified by ∗∗x , but verified by the whole admissible solutions. 

The new constraint  is added to ( 1LP ),  resulting in a linear programming problem 

( 2LP ). The  construction procedure is the next: 
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LPLPLPLPILP DDDDD =⊂⊂⊂

012
. 

        After applying the re-optimization procedure, it is decided whether  2LP  admit 

or not optimal solution. The theory assures us that, under certain conditions, after a 

finite number of steps, we reach a linear programming problem,  ( 1−kLP ), whose 

optimal solution is )(∗kx , which has all its components of integer type, so it is the 

optimal solution of the problem ( ILP ). 
       From a geometric point of view, each new constraint removes a certain portion 
of the set of admissible solutions to the previous problem, making a section of the 
admissible domain and cutting the intrusive section, hence the name of the cut given 
to these additional constraints. From a mathematical point of view, the sectioning 
algorithm [13] is made as follows. 

        We will consider the matrix A , the vector b  are the ones corresponding to the 
optimal solution of the model (LP). We will assume that not all components of vector 

b  are of type integer. Let be the component r  of the vector b  with the maximum 

fractional part, this being rb . 
We will apply the following r representation to the constraint coefficients: 

                                   xaxb
Jj

rjrr 
∈

+=                                                                   (3)     

which can be decomposed in this way:  

                            [ ] { } [ ] { }( ) j
Jj

rjrjrrr xaaxbb 
∈

⋅++=+                                             (4) 

The hypothesis admitted on rb  implies the following relation:   { } 10 << rb .                   

Therefore, the following equality is true: 

                          [ ] [ ] { } { }rj
Jj

rjrj
Jj

rjr bxaxxab −⋅=−⋅− 
∈∈

                                     (5) 

Let  x a whole admissible solution to the problem )(ILP . In this case, the left 

member of the relation (5), is an integer, therefore we get true the next relation:  

                                      [ ] [ ] Zxxab rj
Jj

rjr ∈−⋅−
∈

                                                  (6) 

So,  the right member of equality (5) calculated in the same solution is an integer, i.e. 
we have true the relation:       
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                                                             { } { } Zbxa rj
Jj

rj ∈−⋅
∈

                                                        (7) 

We will prove that the relationship is true: 

                                           { } { } 0≥−⋅
∈

rj
Jj

rj bxa                                                      (8)  

Proof.  We will assume, by absurdity, the opposite, that is: 

                                             { } { } 0<−⋅
∈

rj
Jj

rj bxa                                                    (9)  

Then from the relation (5) results the inequality: 

                                            [ ] [ ] 0<−⋅−
∈

rj
Jj

rjr xxab                                            (10)        

and from (6) it follows that the next  true expression: 
 

                                            [ ] [ ] 1−≤−⋅−
∈

rj
Jj

rjr xxab                                         (11) 

From the equality (5) we will deduce the following relations: 

                      { } { } 1−≤−⋅
∈

rj
Jj

rj bxa  adică: { } { } 1−≤⋅
∈

rj
Jj

rj bxa                         (12)    

Because we have  { } ( )0,rja j J≥ ∀ ∈ ,  we get that left member of  the relationship 

 (5)  is  also 0≥ , while the right limb is  0< , because we have   { } .1<ib  The 

obtained contradiction demonstrates inequality (8).   
Since x was chosen arbitrarily, it follows that the following constraint is true: 

                                                   { } { }rj
Jj

rj bxa ≥⋅
∈

                                                   (13)     

and that it is verified by any permissible integer solution. 

Otherwise, in the optimal solution, which is not of the whole type  ∗x , we will have 

Jjx j ∈=∗ ,0 , values that are entered in (8) lead to inequality  { } 0≤rb , fact, which 

contradicts hypothesis (4),  according to which we have  { } 0>rb . Consequently, the   

inequality (10) is not verified by the fractional optimum ∗x . We will add the 

constraint (10) to the problem ( )LP , and get the modified problem with (m + 1) 

constraints, which we will denote by ( )1LP .   
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In order to apply the solution re-optimization procedure, we will initially transform 

the restriction (10) into equality, introducing a deviation variable 1+nx . Thus, we will 

introduce a new restriction: { } { }rnj
Jj

rj bxxa −=+⋅− +
∈
 1 , which is considered a 

sectioning restriction. 
 

5.   Method of maximizing global utility 
        The method of maximizing global utility was developed by Gh.,  Boldur Lăţescu 
and I.M. Stancu - Minasian in [11].   It is based on the idea of transforming the 
objective functions of a multicriteria problem into utility functions in the sense of von 
Neumann - Morgenstern, which are to be summed to obtain a synthesis function. 
This method, developed in the hypothesis of the existence of a linear programming 
problem with multiple criteria, can be used quite efficiently even in the case of 
decision problems in which we have an infinite number of variants. 
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         In this case the additives of the utilities is possible and, obviously, we will have 
true the next relation:  

                 ( ) ( ) ( ) ( )inniiinii auauauaaaU +++=  221121 ,, . 

         Intuitively, the independence of the criteria in the sense of utility theory 

specifies that a consequence of any variant iV , from the point of view of the criterion 

kC , always corresponds to the same utility, no matter what consequence, from the 

point of view of this criterion, is associated.   
For the presentation of the method we will resume the next linear multicriteria 
decision-making problem (1): 
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rjxFoptim j ,1,
                                                                      (14)   

where:  jF   are the multiobjective (linear) functions / criteria, and D is the range of 

admissible solutions defined by a set of linear constraints, including the positive 
conditions of the variables: 

                                        { }0,| ≥≤∈= xbAxRxD . 
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Global utility maximization method algorithm [11]: 

Step 1.  For each function - purpose its optimal value jX  is determined, where 

( )xFoptimF j
Dx

j
∈

=  and  jY  is its pessimistic value, where ( )xFpessimF j
Dx

p
j

∈
= . 

Step 2.  For the set of optimal and pessimistic sets of values of all criteria, the 
corresponding value utilities in the sense Neumann - Morgenstern [9] are 
associated as follows: 
{ } { }rrrr

p
r

pp
r UUUUUUFFFFFF 221212121 ,,,;,,,,,,;,,,  ++→ . 

Step 3.  The objective functions jF  are transformed into utility functions of the type 

jFU ,  initially solving r  linear systems with 2r variables, the unknowns being the 

coefficients of the type: ( ){ }
rjjj ,1

,
=

βα .  

           After solving the r  systems of linear equations of this type: 
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we will construct accordingly r utility functions such as:  

                    ( ) jjjj XFFU βα += , rj ,1=  

Step 4.  Finally, we will solve the problem of linear programming aimed at 
maximizing the global utility - UG, which is as follows:  

                              
=∈∈

=
r

j
jj

DxDx
FUUG

1

maxmax π , 

where jπ  - is the importance coefficient of the criterion jC , which, obviously, can 

be changed by the decision maker, thus obtaining a new  optimization problem. 
            

6.   Combinatorial synthesis algorithm for solving the linear   
  multicriteria optimization 

One of the most important problems that arises when solving the multicriteria 
optimization problem in integers using the methods of synthesis functions is: what 
kind of optimal solutions of each criterion we will use to build the synthesis function 

of all criteria, these being in +R or in +Z , so that the final model solve it in +Z ? In 
this justified paragraph we will answer this question.  

In order to solve the multicriteria model of linear optimization in integers of 
type (2) we will apply the method of synthesis functions, namely we will use the 
method of maximizing global utility, which we will achieve in two stages. 
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Stage I 
1. At this stage we will solve 2r unicriteria linear programming problem from 

model (2) of  type: ( )xFoptimF j
Dx

j
∈

=  and  ( )xFpessimF j
Dx

p
j

∈
= , on the    

admissible domain: { }0,| ≥≤∈= xbAxRxD ; 

2. Next we will solve 2r more linear programming problems of the type: 
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Dx

j
∈
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p
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∈
= , on the    admissible domain:  

                                  { }0,| ≥≤∈= + xbAxZxD ; 

3. We will combinatorial select the vectors of optimal values and corresponding to 

the pessimistic values of the objective functions, some calculated on +Z , others 

in +R . The number of such combinations is finite because the size of the 
problem is finite. These can be described as follows: 
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The number of such vectors is: r
rrr CCCVN +++= ...)( 21 , the same as the number 

of vectors with pessimistic value records of the criteria. 
Stage II 

1. By selecting one of the vector records of the values of the objective functions 
and the vector of the corresponding records of the pessim values, we will 
construct the synthesis function, which expresses the summary utility of the 

criteria: ( )
=

+=
r

j
jjj FG

1

βα , which must be maximized. The coefficients 

( ){ }
rjjj ,1

,
=

βα  are determined by applying the global utility maximization 

algorithm, described above. 
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2. We will determine the optimal solution of the next model:  
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the optimal compromise solution for model (2).  Either that is it *X . We will 
calculate the values of each objective function in this solution and we will 

build the next vector of records of the criteria: 
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Theorem For a set of a priori utilities assigned to the criteria in model (2), the 
solution of the optimal compromise of the integer model remains the same for any 

vector of the optimal records of the combinatorial criteria calculated in +R  or in +Z . 

Proof.  Let 1
effX  be a solution of the optimal compromise for the whole type model 

(2), which records the smallest distance to the optimal whole type solutions of each 
criterion. We will assume that the synthesis function of the final solved model was 
constructed using a combination of optimal values of the objective functions from 

model (2), some being solved in +R , others in +Z . 

        Let:  

( )
( )

( )


















+

+

+

ZF

RF

RF

r

...
2

1

   -vector of the optimal and pessim 

( )
( )

( )


















+

+

+

RF

RF

RF

p
r

p

p

...
2

1

 recorded values 

of  objective functions. 
         We will assume that for another recording values of the objective functions 
from the model (2), different from the previous one, let it be: 

( )
( )

( )


















+

+

+

ZF

RF

ZF

r

...
2

1

, and corresponding vector of the pessim values 

( )
( )

( )


















+

+

+

ZF

RF

ZF

p
r

p

p

...
2

1

, the objective 

synthesis function registered another solution of the optimal compromise in integers, 

different from the first, either it is 2
effX . If 21

effeff XX ≠ , then there is at least one 

coordinate after which these vectors differ. Therefore, at least for one criterion, let it 

be with indexes 1i ,  the distance between its optimal solution in integers and the new 
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solution is smaller than the previous one, i.e. the relationship is fair: 

( ) ( )*2*1

11
,, ieffieff XXXX ρρ > , where *

1i
X is optimal solution in integer of criterion 1i , 

which contradicts the assumption that 1
effX  is the solution of the optimal compromise 

in integers for the model (2), which had to be demonstrated. So, our assumption is 
wrong. Therefore,  model (2) admits a single solution of the optimal compromise in 
integers, regardless of the configuration of records of the optimal values of the 

criteria in +R or +Z , used in the construction of the synthesis function of the model. 

Remark 1. For any vector of combinatorial records of the values of the 

objective functions of the unicriteria models of the problem (2) in +R or in 
+Z , and for their a priori known utilities, the optimal compromise solution of 

the model (2) in integers remains the same. 
Remark  2. For any new set of initial utilities assigned to the criteria in model (2), 
applying the method of maximizing the maximum utility we will obtain a new 
solution of the optimal compromise in integers for all the criteria of this model. 
 

7.   Conclusions 

         It is well known that multicriteria optimization models enjoy a growing 
interest in everyday life, especially because they more appropriately describe 
decision-making situations in different socio-economic fields. Unfortunately, 
we do not always have methods to solve them efficiently. Imposing the solution in 
integers of the model, of course, increases the complexity of the problem, even in the 
case of the linear type model. The proposed paper brings a clarity in the problem of 
solving the multicriteria optimization model of linear type in integers. We focused on 
the use of the methods of synthesis functions,  namely the method of maximizing the 
global utility in solving the multicriteria model of linear type in integers, which leads 
us to determine an optimal compromise solution, closest to the optimal solutions in 
integers of each separate criterion. To determine this, the decision maker can use both 
the optimal value of each criterion in integers and the one calculated on the set of real 
numbers, of course positive. The set of all possible combinations of such vectors for 
recording the values of the objective functions as well as the weight values was 
exploited. Regardless of the configuration used to construct the synthesis function, its 
optimal solution in integers does not change. So, the decision maker can select the 
most advantageous values in terms of calculations of objective functions, a very 
important moment that certainly increases the efficiency of the algorithm. This 



 
 
 
 

Method for Solving the Linear Multicriteria Optimization Problem in Integers 
_____________________________________________________________ 
 

171 
 
 
 
 
 
 

 

conclusion was theoretically justified by the theorem that is brought in the paper. The 
proposed algorithm was verified on a concrete example proposed in the paper. 

Example 
        For the following linear model of multicriteria optimization in integers find the 
solution of the optimal compromise using the method of synthesis functions, for the 
proposed utilities of criteria. 

                                            ( ){ }3211 2min xxxXF ++=  

                                            ( ){ }3211 22max xxxXF ++=  

                                            ( ){ }3211 32max xxxXF ++=  

                                               











∈
≥++
≤++
≤++

+Zx

xxx

xxx

xxx

j

522

20235

1853

321

321

321

 

1F  2F  3F  pF1  pF2  pF3  

1U =4 82 =U  93 =U  11 =U  22 =U  23 =U  

 
Solving procedure:  In order to solve the problem, among the methods of synthesis 
functions we will apply the method of maximizing the global utility. We will initially 

solve six  unicriteria linear programming problems in +R , determining the optimal 
and pessim values of each criterion according to Stage I of the proposed algorithm. 

Next, we will solve the same six  unicriteria linear programming problems in +Z , 
similarly determining the optimal and pessim values of each criterion. For the 
construction of the synthesis function, using the method of maximizing the global 
utility, we found the combinatorial form of the registration vectors of the optimal and 

pessim values of the objective functions in +R and +Z . These are the following: 

1) 
( )
( )
( )














+

+

+

RF

RF

RF

3

2

1

,

( )
( )
( )














+

+

+

RF

RF

RF

p

p

p

3

2

1

; 2)

( )
( )
( )














+

+

+

ZF

ZF

ZF

3

2

1

, 

( )
( )
( )














+

+

+

ZF

ZF

ZF

p

p

p

3

2

1

; 3) 

( )
( )
( )

,

3

2

1

















+

+

+

ZF

ZF

RF

 

( )
( )
( )














+

+

+

ZF

ZF

RF

p

p

p

3

2

1

;  

 4)

( )
( )
( )














+

+

+

ZF

RF

RF

3

2

1

, 

( )
( )
( )














+

+

+

ZF

RF

RF

p

p

p

3

2

1

; 5) 

( )
( )
( )














+

+

+

RF

RF

RF

3

2

1

, 

( )
( )
( )














+

+

+

RF

RF

RF

p

p

p

3

2

1

; 6) 

( )
( )
( )














+

+

+

RF

ZF

ZF

3

2

1

, 

( )
( )
( )














+

+

+

RF

ZF

ZF

p

p

p

3

2

1

; 
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 7) 

( )
( )
( )














+

+

+

ZF

RF

ZF

3

2

1

, 

( )
( )
( )














+

+

+

ZF

RF

ZF

p

p

p

3

2

1

; 8) 

( )
( )
( )














+

+

+

RF

RF

ZF

3

2

1

, 

( )
( )
( )














+

+

+

RF

RF

ZF

p

p

p

3

2

1

; 

      We will not place the optimal solutions and the weight of the solved models, but 
we will place them directly in the vectors of the proposed combinations of values.     
Next we will solve 24 systems of linear equations in order  to determine the 

coefficients ( ){ }
rjjj ,1

,
=

βα  needed to construct the function summary utility function. 

Analogously, we will not place the solutions of the systems of solved equations, but 
we will directly propose the objective functions, which represent synthesis functions 
for each of the eight listed cases. For each of the proposed combinations we will 
describe the corresponding synthesis functions constructed using the same table of 
proposed utilities for the model criteria. These are the next: 

  ( ) 3211 09.163.173.1 xxxUF ++=  → max 

  ( ) 3212 13.175.183.1 xxxUF ++=  → max 

  ( ) 3213 15.18.185.1 xxxUF ++=  → max 

  ( ) 3214 15.18.185.1 xxxUF ++=  → max        

  ( ) 3215 09.163.173.1 xxxUF ++=  → max 

  ( ) 3216 07.157.17.1 xxxUF ++=  → max 

  ( ) 3217 13.175.183.1 xxxUF ++=  → max 

  ( ) 3218 07.157.17.1 xxxUF ++=  → max 

       They express the summary utility of all the criteria and are to be maximized on 
the admissible domain of values, which is given by the same restrictions: 











∈
≥++
≤++
≤++

+Zx

xxx

xxx

xxx

j

522

20235

1853

321

321

321

 

        Solving in turn these 8 problems of linear programming in integers, we obtained 
the following solutions of the optimal compromise: 

=1
effX  ======= 8765432

effeffeffeffeffeffeff XXXXXXX  { }0,3,1 321 === xxx ; 

      We calculated  the values of the utility functions, which are the following: 
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( ) 89.111 ≈UF ; ( ) 105.122 ≈UF ; ( ) 02.123 ≈UF ; ( ) 02.124 ≈UF ; 

( ) 89.115 ≈UF ;  ( ) 93.116 ≈UF ;  ( ) 105.127 ≈UF ; ( ) 93.118 ≈UF ; 

( )
( )
( )
( )














=
1

3

1
2

1
1

1

eff

eff

eff

eff

XF

XF

XF

XF = ( )
( )
( )
( )














=
2

3

2
2

2
1

2

eff

eff

eff

eff

XF

XF

XF

XF = ( )
( )
( )
( )














=
3

3

3
2

3
1

3

eff

eff

eff

eff

XF

XF

XF

XF =    

( )
( )
( )
( )














=
4

3

4
2

4
1

4

eff

eff

eff

eff

XF

XF

XF

XF == ( )
( )
( )
( )














=
5

3

5
2

5
1

5

eff

eff

eff

eff

XF

XF

XF

XF = ( )
( )
( )
( )














=
6

3

6
2

6
1

6

eff

eff

eff

eff

XF

XF

XF

XF = 

              = ( )
( )
( )
( )














=
7

3

7
2

7
1

7

eff

eff

eff

eff

XF

XF

XF

XF = ( )
( )
( )
( )














=
8

3

8
2

8
1

8

eff

eff

eff

eff

XF

XF

XF

XF = 















=

11

5

7

; 

          As we see, the decision maker is free to choose the vector of the registered 

combinations of the values of the objective functions  in +R and in +Z , this doesn’t 
influencing the solution of the optimal compromise for the multicriteria problem of 
linear type in integers. We would like to mention that by modifying the table of 
utilities associated with the criteria for the reasons of the real decision-making 
situation, the decision maker can obtain another solution of the optimal compromise 
in integers for the model (2), using the algorithm proposed in the paper. 
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